
Preliminary Interface Control Document for the
Conflict Detection And Resolution Function of
the Airborne Operational Planner System

November 2000

Prepared for:

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA

Prepared by:

CSSI Inc.
600 Maryland Ave., SW

Suite 890
Washington, DC 20024

Titan Corp.
Burlington, MA

ii

Author Contact Information:

Stephane Mondoloni, Ph.D. (202) 863-2175 smondoloni@cssiinc.com

iii

Table of Contents

1 SCOPE... 1

1.1 IDENTIFICATION.. 1
1.2 SYSTEM OVERVIEW .. 1
1.3 DOCUMENT OVERVIEW .. 3

2 APPLICABLE DOCUMENTS .. 4

2.1 GOVERNMENT DOCUMENTS... 4
2.2 NON-GOVERNMENT DOCUMENTS.. 4

3 INTERFACE DESCRIPTION... 5

3.1 INTERFACE DIAGRAMS ... 5
3.2 CD&R AND AOP CALLING FUNCTION... 5

3.2.1 Protocol ... 6
3.2.1.1 Creating and Starting the CD&R Control Task ...6
3.2.1.2 Messages from AOP to CD&R...7
3.2.1.3 Messages from CD&R to AOP...10

3.2.2 Priority... 11
3.2.3 Data Elements ... 12

3.2.3.1 Own-ship Flight Plan Data Description ...12
3.2.3.1.1 Airport Type...14
3.2.3.1.2 Runway Type ...14
3.2.3.1.3 Altitude List Type..15
3.2.3.1.4 Waypoint Type...15

3.2.3.1.4.1 XYZ Data Type ...17
3.2.3.1.4.2 Restriction Data Type ...17
3.2.3.1.4.3 Atmospheric Data Type ..18
3.2.3.1.4.4 MCP State Data Type..19
3.2.3.1.4.5 State Data Type ...19

3.2.3.2 Own-ship Trajectory Description ...20
3.2.3.3 Own-ship State Description ..23
3.2.3.4 Area Hazard Description...23
3.2.3.5 Intruder Aircraft Trajectory Description ..25
3.2.3.6 Intruder Aircraft State Information...26
3.2.3.7 (Deleted) ..26
3.2.3.8 Boundary Constraints..26

3.3 CD&R AND FLIGHT RULES.. 27
3.3.1 Protocol ... 28
3.3.2 Priority... 28
3.3.3 Data Elements ... 28

3.3.3.1 Conflict Information..28
3.3.3.2 Own-ship Flight Trajectory...30
3.3.3.3 Own-ship Flight Plan ..30
3.3.3.4 Own-ship Aircraft State ..30
3.3.3.5 Description of Conflicting Hazards ..30
3.3.3.6 Maneuver Constraints ...30

3.4 CD&R AND FMS PRE-PROCESSOR.. 33
3.4.1 Protocol ... 33
3.4.2 Priority... 34
3.4.3 Data Elements ... 34

3.4.3.1 Flight Plan Description..34
3.4.3.2 State Description ...34
3.4.3.3 Trajectory Data Description..34

3.5 CD&R AND CONSTRAINT MANAGER .. 35
3.5.1 Protocol ... 35

iv

3.5.2 Priority... 35
3.5.3 Data Elements ... 35

3.5.3.1 Own-ship Flight Trajectory...36
3.5.3.2 Own-ship Flight Plan ..36
3.5.3.3 Own-ship Flight State..36
3.5.3.4 Conflict Description ..36
3.5.3.5 Area Hazard Description...36
3.5.3.6 Intruder Trajectories ..36

3.6 CD&R AND USER INPUT FUNCTION .. 36
3.6.1 Protocol ... 36
3.6.2 Priority... 36
3.6.3 Data Elements ... 37

3.6.3.1 User-Supplied Flight Plans ...37
3.6.3.2 Resolution Mode Selection ...37
3.6.3.3 Request of Next Flight Plan..38
3.6.3.4 Resolution Accept ...38
3.6.3.5 User-Supplied Maneuver Constraints...38
3.6.3.6 User-Supplied Maneuver Preferences ..38

3.7 CD&R AND LONG-TERM OPTIMIZATION FUNCTION... 39
3.7.1 Protocol ... 39
3.7.2 Priority... 39
3.7.3 Data Elements ... 39

3.7.3.1 Long-Term Optimized Flight Plan ...40
3.7.3.2 Long-Term Optimized Flight Trajectory..40

3.8 CD&R AND CREW NOTIFICATION FUNCTION ... 40
3.8.1 Protocol ... 40
3.8.2 Priority... 40
3.8.3 Data Elements ... 40

3.8.3.1 Conflict Information..41
3.8.3.2 Result of Flight Rules..41
3.8.3.3 Resolution Result Output ..41
3.8.3.4 Conflict Disappeared...41

v

List of Figures

Figure 3.1-1 CD&R Function Interfaces .. 5
Figure 3.2.1-1 Schematic of message passing between AOP Calling functions and CD&R Control function. 6

1

1 Scope

1.1 Identification

This Interface Control Document (ICD) describes the interfaces to the Conflict Detection
and Resolution (CD&R) component of the Airborne Operational Planner (AOP). The
following interfaces are described for the CD&R component.

1. The interface between the Conflict Detection and Resolution Function (CD&R)
and the Airborne Operational Planner (AOP).

2. The interface between the CD&R and an external Flight Rules (FR) function. The
flight rules function accepts information from CD&R and responds with conflict
constraints based upon specified rules. These constraints may specify whether the
aircraft should move and what some constraints on maneuvers should be.

3. The interface between the CD&R and the FMS pre-processor.

4. The interface between the CD&R and the Constraint Manager (CM).

5. The interface between CD&R and User Input Function.

6. The interface between CD&R and the Long Term Optimization Function.

7. The interface between CD&R and the Crew Notification Function.

1.2 System Overview

The Conflict Detection and Resolution function is a software component of the Airborne
Operational Planner responsible for the detection and resolution of conflicts due to
hazards such as traffic hazards, Special Use Airspace (SUA), inclement weather and
terrain. The CD&R function defined in this document describes an “intent-based”
CD&R function based upon the intended flight trajectory of the own-ship and
neighboring aircraft. The overall CD&R requirements are defined in the document
Software Specification for the Conflict Detection and Resolution Function of the
Airborne Operational Planner.

In order to provide the specified functionality, the CD&R function must interface with a
variety of external functions and databases. Each of the interfaces serves a particular role
as defined below.

a) AOP to CD&R – This interface is the primary interface between the AOP and the
CD&R function. The AOP submits own-ship flight plan information, own-ship
state information, area hazard descriptions, and intruder flight trajectory
information. Flight plan information is allowed to contain waypoint constraints.
If required, the AOP may also submit boundary constraints such as required times

2

of arrival at a boundary. Upon completion of conflict resolution, the CD&R
function responds to the AOP with an indication of success or failure.

b) CD&R to flight rules – The CD&R function interfaces with a flight rules (FR)
function for the purpose of determining which aircraft in a conflict is required to
execute an avoidance maneuver. The rules can optionally be used to obtain
constraints on maneuvers. These constraints can be used to provide heuristic
conflict resolution maneuvers, or to provide for standardized cooperative
maneuvers.

c) CD&R and FMS Preprocessor – The CD&R function interfaces with an FMS
preprocessor for the purpose of obtaining a flight trajectory from a flight plan.
The flight plan may contain a series of constraints. The FMS is expected to
respond to the submission of a flight plan with a flight trajectory.

d) CD&R and Constraint Manager – The CD&R function interfaces with a
Constraint Manager function. The CD&R function calls the Constraint Manager
function in the event that CD&R is unable to obtain a solution given all of the
specified constraints and hazards. The Constraint Manager (CM) function obtains
a flight plan, trajectory, hazard and conflict information from the CD&R function.
The Constraint Manager provides the CD&R function with a combination of
flight plan constraint relaxation, hazard prioritization and flight rules modification
in order to allow the CD&R to obtain a resolution maneuver.

e) CD&R and User Input Function – The CD&R function interfaces with a User
Input function. The purpose of this interface is to allow the crew to input user-
preferences (e.g. minimum time resolution), maneuver constraints (e.g. lateral
maneuvers should be obtained), specific flight plans during manual resolution
mode, and specification of the resolution mode desired. The interface with a User
Input function is to be indirect through the AOP calling function.

f) CD&R and Long Term Optimization Function – The CD&R function interfaces
with the Long Term Optimization Function in order to obtain an optimized flight
plan and trajectory for conflict detection. The Optimization function should also
be capable of submitting to CD&R an indicator that no optimized flight plan is
available.

g) CD&R and Crew Notification Function – The CD&R function interfaces with a
Crew Notification Function in order to provide feedback to the crew. Conflict
information, area hazards, and status information (such as right-of-way) are all
submitted to the Crew Notification Function. The interface with the Crew
Notification Function will be indirect through the AOP calling function.

3

1.3 Document Overview

The purpose of this document is to describe the interfaces for the Conflict Detection and
Resolution function. Each interface is described in a separate subsection beginning at
Section 3.2.

4

2 Applicable Documents

2.1 Government Documents

The following documents of the exact issue shown form a part of this document to the
extent specified herein.

Autonomous Operations Planner – System Requirements and High Level Design-
January, 2000.

2.2 Non-Government Documents

The following documents of the exact issue shown form a part of this document to the
extent specified herein.

Preliminary Software Specification for the Conflict Detection and Resolution Function of
the Airborne Operational Planner – February, 2000.

Airborne Operational Planner (AOP) Conflict Resolution Algorithm Description, April,
2000.

FMS Prediction, Draft v.8, Sam Liden, July, 2000.

ACE online manual at:

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/man/acewindex.html

5

3 Interface Description

3.1 Interface Diagrams

Figure 3.1-1 illustrates the connectivity of the CD&R function to external functions.
Functions that are expected to operate concurrently are indicated with shaded areas.
Thus, the User Input Function is anticipated to be operating concurrently with the CD&R
function and data is only expected to flow from the User Input Function to the CD&R
function. Heavy arrows indicate the direction of the initial call and light arrows indicate
the direction of a response.

The CD&R function is decomposed into two distinct components, one that is expected to
operate concurrently with AOP, CNF and the User Input Function, and one that is not
expected to be concurrent.

Figure 3.1-1 CD&R Function Interfaces

3.2 CD&R and AOP calling function

The CD&R function and the AOP calling function will exchange data as specified in this
section.

AOP Calling

Constraint
Manager

Flight
Rules

FMS
pre-processor

CNF

Long-Term
Optimization

User Input
Function

CD&R
Function

Future

6

3.2.1 Protocol

The CD&R and the AOP calling function operate concurrently. Data can be received
asynchronously by the CD&R function from the AOP calling function. Data can be sent
asynchronously from the CD&R function to the AOP calling function.

Figure 3.2.1-1 Schematic of message passing between AOP Calling functions and
CD&R Control function.

Classes defined by the Adaptive Communications Environment (ACE) are used in
defining the protocol between the AOP calling function and the CD&R function. Figure
3.2.1-1 describes at a high level the interaction between the AOP Calling function and the
CD&R control function. This interaction can be broken into three separate types.

• The AOP Calling function creates and starts the CD&R control function. The
CD&R control function will subsequently operate in a separate thread from the
AOP Calling function. Upon starting the CD&R control function, the AOP
calling function supplies the CD&R function with a pointer to a return queue to be
used for message passing.

• The AOP Calling function will send messages to the CD&R control function
through the CD&R control queue.

• The CD&R control function will return messages to the AOP Calling function via
the return queue supplied.

3.2.1.1 Creating and Starting the CD&R Control Task

It is assumed that a TaskCDRControl class is instantiated and started by AOP. This class
inherits from the ACE_Task and (has a svc method which) operates as an independent

AOP Calling

return_queue->dequeueMessage()

CDR_control.getq(msg)

CDR_control

return_queue->enqueueMessage()

Creates &
Starts

CDR_control.putq(msg)

msg messages on
return queue

Inherits from
ACE_Task

7

thread from the AOP calling function. AOP can instantiate a TaskCDRControl class as
follows:

TaskCDRControl CDR_control;

The above task is started by invoking the start method, which starts a separate thread for
the CDRControl task.

int TaskCDRControl::start (ReturnQueue *)

Note that the above will return a value of –1 if the method cannot be started. A pointer to
a ReturnQueue is provided in order for messages to flow back to the AOP calling
function. In order to receive messages from the CD&R function, the AOP needs to
instantiate a ReturnQueue class and provide the address to the start method of the
TaskCDRControl class.

3.2.1.2 Messages from AOP to CD&R

Messages are passed from the AOP calling function to the CD&R function by invoking
the putq method of the TaskCDRControl class as shown below.

int TaskCDRControl::putq(Message_Block *);

Messages from the AOP calling function to the CD&R function are encoded into a
Message_Block class inheriting from the ACE_Message_Block class.

The AOP calling function is expected to provide the CD&R function with messages
described below. The message names containing those data elements are shown in
parentheses).

• Own-ship flight plan with constraints (FLIGHT_PLAN)

• Own-ship state information (STATE)

• Area hazard description (AREA_HAZARD)

• Area hazard to be removed (REMOVE_AREA_HAZARD)

• Intruder aircraft flight trajectories (TRAFFIC)

• Intruder flight trajectories to be removed (REMOVE_TRAFFIC)

• Boundary Constraints (BOUNDARY_CONSTRAINT)

The AOP calling function will additionally supply the following information assumed to
originate from a User Input function. The message names are shown in parentheses.

8

• Flight plans for manual resolution or trial planning (MANUAL_FP_RES)

• Selection of Automatic resolution mode (FORCE_AUTOMATIC)

• Request of next resolved flight plan (REQUEST_RESOLVED)

• Acceptance of resolution (ACCEPT_RESOL)

• User-supplied maneuver constraints (MANEUVER_CONSTRAINT)

• User-supplied maneuver preferences (MANEUVER_PREFERENCE)

The above messages are encoded into the Message_Block class defined below.

class Message_Block : public ACE_Message_Block

{
public:
 typedef ACE_Message_Block inherited;

 // Constructors
 Message_Block(size_t);
 Message_Block(size_t , StateCR*);
 Message_Block(size_t , FlightPlan*);
 Message_Block(size_t , struct Ownship*);
 Message_Block(size_t , struct Intruder *);
 Message_Block(size_t , struct AreaHazard*);
 Message_Block(size_t , int, BoundaryConstraint*);
 Message_Block(size_t , ManeuverList *);
 Message_Block(size_t , ManeuverPreference*);
 Message_Block(size_t , struct Conflict*, struct AreaConflict*);

 // Destructor
 ~Message_Block();

 // Accessor Methods
 StateCR *state(void);
 FlightPlan* flightPlan(void);
 struct Ownship* getTrajectory(void);
 struct Intruder* getIntruder(void);
 struct AreaHazard* getAreaHazard(void);
 BoundaryConstraint* getBoundaryConstraint(void);
 int getNumberOfBoundaries(void);
 ManeuverList* getManeuverList(void);
 ManeuverPreference getManeuverPreference(void);
 struct Conflict* getConflictData(void);
 struct AreaConflict* getAreaConflictData(void);

9

protected:
 (… protected data in here, not relevant to ICD)
};

Messages are encoded into the message block by invoking the appropriate constructor
given the data being passed. The appropriate constructor for each message type is
defined in the table below.

Constructor Message Type
Message_Block(size_t); FORCE_AUTOMATIC

REQUEST_RESOLVED
ACCEPT_RESOL

Message_Block(size_t , StateCR*); STATE
Message_Block(size_t , FlightPlan*); FLIGHT_PLAN

MANUAL_FP_RES
Message_Block(size_t , struct Ownship*); OWN_TRAJECTORY
Message_Block(size_t , struct Intruder *); TRAFFIC

REMOVE_TRAFFIC
Message_Block(size_t , struct AreaHazard*); AREA_HAZARD

REMOVE_AREA_HAZARD
Message_Block(size_t , int, BoundaryConstraint*); BOUNDARY_CONSTRAINT
Message_Block(size_t , ManeuverList *); MANEUVER_CONSTRAINT
Message_Block(size_t , ManeuverPreference*); MANEUVER_PREFERENCE

An example is provided below to describe how a “TRAFFIC” message would be placed
onto the CDR_Control queue.

// A current intruder is instantiated
struct Intruder* cur_intruder = new struct Intruder();

// Code in here will assign data to the intruder

// The intruder is placed onto a message block with enough space // for text (128)
Message_Block *message = new Message_Block(128, cur_intruder);

//Put text message into block and move to end of message
ACE_OS::sprintf(message->wr_ptr (), "TRAFFIC");
message->wr_ptr(strlen(message->rd_ptr ())+1);

//Add the message to CDR control queue and error check
if (CDR_control.putq(message) == -1)
{
 // Error message in here
}

The CD&R function will retrieve the above messages through the getq method of the
ACE_Task class. Data within the message is retrieved using the rd_ptr method of the

10

ACE_Message_Block class, and using the accessor methods of the Message_Block class
defined above.

3.2.1.3 Messages from CD&R to AOP

Messages are passed from the CD&R control class to the AOP calling function by
placing them onto the return queue. This is achieved by invoking one of the following
methods.

int ReturnQueue::enqueueMessage(const char*)
int ReturnQueue::enqueueMessage(const char*, FlightPlan*)
int ReturnQueue::enqueueMessage(const char*, struct Conflict* , struct AreaConflict*)

A simple text message uses the first method, a message including a flight plan uses the
second method and a message supplying conflict information will use the third method.

The AOP calling function may retrieve the above messages by invoking the following
method. Note that the message text is placed onto a character string and all other data is
obtained by passing pointer addresses.

int ReturnQueue::dequeueMessage(char [50], FlightPlan** , struct Conflict**, struct
AreaConflict**)

In response to many of the messages from the AOP to the CD&R function, the CD&R
function may send messages back to the AOP calling function. Many of these messages
are eventually destined for display to the flight crew. The following table describes the
messages that are appropriate responses to original messages.

Outgoing Message
(AOP to CD&R)

Response Message (CD&R to AOP) Significance

ACCEPT_RESOL ERROR_NO_RES
INITIALIZING:_NO_RES
ERROR_CANNOT_ACCEPT_RES

No active resolution task
In initialization mode
Unable to stop resolution

Any message
initiating CD&R

NO_CONFLICT
CONFLICT
THEY_MOVE
WE_MOVE

No conflict found
Conflicted flight
Flight need not move
Flight required to move

REMOVE_AREA ERROR_CANNOT_STOP_RES
ERROR:CANNOT_REMOVE_AREA
ERROR:AREA_NOT_PRESENT_TO_REMOVE

No active resolution task
No hazards to remove
Hazard not found

REMOVE_TRAFFIC ERROR_CANNOT_STOP_RES
ERROR:CANNOT_REMOVE_TRAFFIC
ERROR:TRAFFIC_NOT_PRESENT_TO_REMOVE

No active resolution task
No hazards to remove
Hazard not found

REQUEST_RESOLVED ERROR_NO_RES
ERROR_CANNOT_REQUEST_RES
INITIALIZING:_NO_RES
NOT_RESOLVED_YET
RESOLVED_FP
LAST_RESOLVED_FP

No active resolution task
Unable to enqueue msg
In initialization mode
No resolution found yet
Resolution FP provided
Last resolved FP in list

11

AREA_HAZARD
BOUNDARY_CONSTRAINT
FLIGHT_PLAN
TRAFFIC
STATE

ERROR_CANNOT_REQUEST_RES Unable to enqueue msg

FORCE_AUTO INITIALIZING_CANNOT_FORCE_AUTO
ERROR_CANNOT_REQUEST_RES

In initialization mode
Unable to enqueue msg

MANEUVER_CONSTRAINT INITIALIZING:MANEUVER_STORED

NO_CONFLICT_FOR_MANEUVER

Store maneuver when in
initialization mode
No conflict exists for this
maneuver constraint

MANUAL_FP_RES INITIALIZING: NO MANUAL RES
CONFLICT_FREE FLID
CONFLICTED FLID

In initialization mode
FLID is conflict-free
FLID is conflicted

Completed resolution RESOLVED_FP
RESOLUTION_NOT_FOUND

Resolved FP is provided
No resolution was found

The above messages are all placed in the ReturnQueue class along with appropriate data.
The ReturnQueue class is described below.

class ReturnQueue
{
public:
 // Constructor creates a queue
 ReturnQueue();

 // Enqueuing methods
 int enqueueMessage(const char *);
 int enqueueMessage(const char *, FlightPlan *);
 int enqueueMessage(const char *, struct Conflict*, struct AreaConflict*);

 // Dequeues messages one at a time and returns pointers (if applicable)
 int dequeueMessage(char [], FlightPlan **, struct Conflict **, struct AreaConflict**);

private:
 ACE_Message_Queue<ACE_MT_SYNCH> *mq_; // Underlying queue
};

Most message types will enqueue just a text message using the first constructor. In this
case, the dequeueMessage method returns pointers to NULL for flight plan and conflict
data. The enqueueMessage constructor with the flight plan is only called for the
following messages: RESOLVED_FP and LAST_RESOLVED_FP. The constructor
with conflict data is only called for the CONFLICT and CONFLICTED messages.

3.2.2 Priority

Data transferred from the AOP calling function to the CD&R function consists of data
such as hazard descriptions (area and intruder), flight plans, flight trajectories, and
aircraft-state information. It is anticipated that certain data elements will have higher

12

priority than others (closer hazards, active own-ship trajectories versus provisional
trajectories). Data transferred between the AOP calling function and the CD&R function
may contain priority information for use by the end application. Requirements for this
priority information have not yet been defined. The current CD&R build does not
incorporate priority information.

3.2.3 Data Elements

All of the messages described above contain data types defined in this and subsequent
sections.

3.2.3.1 Own-ship Flight Plan Data Description

A flight plan is defined through the following class definition.

class FlightPlan
{
public:

// Constructor
FlightPlan();

// Destructor
~FlightPlan();

 double time_stamp;
 char *flight_number;
 struct AirportType *origin;
 struct AirportType *destination;
 struct RunwayType *departure_runway;
 struct RunwayType *arrival_runway;
 double cost_index;
 struct AltitudeList* cruise_altitude; // Implemented as a double for initial CD&R
 double required_climb_cas;
 double required_climb_mach;
 double required_cruise_speed;
 double required_descent_mach;
 double required_descent_cas;
 int number_of_waypoints;
 Waypoint *waypoint;
};

Note that the cruise altitude is implemented as a double for the initial CD&R capability
since the trajectory generation function currently supports only a single altitude. The
elements of the class are defined in the following table.

13

Data Element Description Type / Units Range
time_stamp A time stamp indicating the

time at which this flight plan
was created. Note that changes
in PPOS as the first point in the
flight plan result in an update to
the timestamp.

double /
minutes

based on
AOP
system
clock range

flight_number A string tracking the flight
number (e.g. AAL001).

char * ASCII
string

origin A pointer to origin airport data. struct
AirportType *

Null or
pointer to
valid
airport data

destination A pointer to destination airport
data.

struct
AirportType *

Null or
pointer to
valid
airport data

departure_runway A pointer to departure runway
data

struct
RunwayType
*

Null or
pointer to
valid
runway
data

arrival_runway A pointer to arrival runway data struct
RunwayType
*

Null or
pointer to
valid
runway
data

cost_index Cost Index for flight double 0 - 999
cruise_altitude A sequential list of cruise

altitudes for the flight. The first
element in the list is the initial
cruise altitude and other
elements represent altitudes for
step climbs and descents

struct
AltitudeList *

Pointer to
valid list.
(never
NULL)

required_climb_cas Desired CAS for the constant
CAS portion of climb

double / knots >0

required_climb_mach Desired Mach number for the
constant Mach portion of climb

double >0

required_cruise_speed Desired cruise speed. A mach
number is assumed for speeds
less than 50. CAS is assumed
for speeds greater than 50.

double / knots
or Mach

>0

required_descent_mach Desired Mach number for a
constant Mach portion of
descent

double >0

required_descent_cas Desired CAS for a constant double / knots >0

14

CAS portion of descent
number_of_waypoints Number of waypoints to follow

in the list of waypoints.
int >0

waypoint Pointer into a list of valid
waypoints.

Waypoint* Pointer to
valid list or
NULL

The above data description requires that several data types be defined, these are defined
below.

3.2.3.1.1 Airport Type

The airport type is defined through the following data structure. This data structure is
currently a simple placeholder and is expected to be modified.

typedef struct AirportType {
 char *name;
 double latitude;
 double longitude;
} AirportType;

Data
Element

Description Type / Units Range

name Name of the airport
(ICAO)

char * ASCII string

latitude Airport reference latitude
(North is positive)

double / radians (-π, π)

longitude Airport reference longitude
(East is positive)

double / radians (-π, π)

3.2.3.1.2 Runway Type

The runway type is defined through the following data structure. The data structure is
simply a placeholder for future runway information. Future runway information may
include runway length, direction, airport reference, altitude, threshold location, slope, etc.

typedef struct RunwayType {
 char *name;
} RunwayType;

Data
Element

Description Type / Units Range

name Runway name (e.g. 22L) char * ASCII string

15

3.2.3.1.3 Altitude List Type

A list of altitudes represents a list of valid cruise altitudes for the flight and subsequent
step climbs and descents. The altitude list is defined through the following doubly linked
list data structure. The first element in the list represents the first cruise altitude.

typedef struct AltitudeList
{
 double altitude;
 struct AltitudeList *next;
 struct AltitudeList *prev;
};

Data Element Description Type / Units Range
altitude Desired altitude double / feet 0 – 99,999
next Pointer to subsequent

altitude step. Points to
NULL if last in list

struct AltitudeList * valid pointer to next
list element, or
NULL

prev Pointer to previous
altitude step. Points to
NULL if first element

struct AltitudeList * valid pointer to prior
list element, or
NULL

3.2.3.1.4 Waypoint Type

The waypoint type describes the waypoint data in some detail. The data structure defined
below contains references to data types that will subsequently be defined.

class Waypoint
{
public:

Waypoint(); // Constructor
~Waypoint(); // Destructor;

char *identifier
char *waypoint_name;
double latitude;
double longitude;
Xyz xyz_location;
Restriction time_restriction;
Restriction speed_restriction;
Restriction mach_restriction;
Restriction altitude_restriction;
struct AtmosphericType atmospheric;
struct mcpState *requested_mcp;
StateCR* forecast_state;
double delta;

16

int n_add;
int original;
int required;
Waypoint *next;
Waypoint *prev;

};

Data Element Description Type / Units Range
identifier An identifier for the waypoint char * ASCII

string
waypoint_name A name for the waypoint char * ASCII

string
latitude Latitude of the waypoint (N is

positive)
double / radians (-π,π)

longitude Longitude of the waypoint (E is
positive)

double / radians (-π,π)

xyz Unit vector corresponding to
waypoint location

Xyz valid XYZ
structure

time_restriction Structure representing RTA
constraints at this waypoint.

Restriction/
bounds in
minutes

speed_restriction Structure representing CAS
constraints at this waypoint

Restriction/
bounds in knots

mach_restriction Structure representing MACH
restrictions at this waypoint

Restriction

altitude_restriction Structure representing altitude
constraints at this waypoint

Restriction/
bounds in feet

atmospheric Structure representing
atmospheric data at this waypoint

struct
atmosphericType

requested_mcp Pointer to a structure representing
anticipated mode control panel
(MCP) data at this waypoint

struct mcpState*

forecast_state Pointer to the nearest state data in
the corresponding trajectory.
Prior to trajectory generation this
is set to NULL.

StateCR * NULL or
pointer to
valid data

delta Cross-track deviation from the
original flight plan. (Used
internally in CD&R, expect this to
be set to 0 upon receipt of flight
plan by CD&R.)

double / nmi valid
double

n_add Number of off-track waypoints
permitted after this one. (Used
internally in CD&R, expect this to
be set to 0 upon receipt of flight
plan by CD&R.)

int ≥0

17

original Flag indicating whether this point
is part of the original flight plan (0
= no)

int valid int

required Flag indicating whether this
waypoint is required as part of the
flight plan (no = 0)

int valid int

next Pointer to the next waypoint in the
flight plan. Set to NULL for last
waypoint in flight plan.

Waypoint* NULL or
pointer to
valid data

prev Pointer to the previous waypoint
in the flight plan. Set to NULL
for first waypoint in flight plan.

Waypoint* NULL or
pointer to
valid data

3.2.3.1.4.1 XYZ Data Type

The Xyz data structure is used to represent the unit vector from the center of the earth to a
specific location. The algorithm for conversion to this data structure is described in
Section 4.2.2.1 of “Airborne Operational Planner (AOP) Conflict Resolution Algorithm
Description”, April, 2000. The data structure is defined below.

typedef struct {
 double x;
 double y;
 double z;
} Xyz;

Data
Element

Description Type / Units Range

x x – coordinate of unit
vector

double (-1, 1)

y y – coordinate of unit
vector

double (-1, 1)

z z – coordinate of unit
vector

double (-1,1)

3.2.3.1.4.2 Restriction Data Type

Each flight plan restriction is described following the same data structure as defined
below. Note that the units are based on the use of the restriction data type. For instance,
a speed restriction will have units of knots for the upper and lower bounds.

enum Code {INACTIVE, AT, AT_OR_ABOVE, AT_OR_BELOW, BETWEEN};

typedef struct Restriction
{

Code type;

18

double lower;
double upper;
int required;

} Restriction;

Data Element Description Type / Units Range
type Definition of the type of

constraint at this point. This
data needs to be consistent with
the lower and upper bounds
defined below.

enum INACTIVE
AT
AT_OR_ABOVE
AT_OR_BELOW
BETWEEN

lower Lower bound of constraint double valid double
upper Upper bound of constraint double valid double
required Flag indicating whether this

constraint is required to remain
unchanged through the
resolution process. (false = 0)

int valid int

3.2.3.1.4.3 Atmospheric Data Type

This data type is not expected to remain as it is currently defined. The current definition
stems from the need to interface with Fastwin for testing purposes. CD&R does not
require atmospheric data and is merely passing this data through. However, deep copies
of waypoint data, and addition of waypoints within CD&R require some internal CD&R
knowledge of this data type. The current atmospheric data element is defined below and
is associated with an individual waypoint location.

typedef struct AtmosphericType {
 double altitude[5];
 double temp[5];
 double wind_speed[5];
 double wind_direction[5];
 double temp_dev[5];
} AtmosphericType;

Data Element Description Type / Units Range
altitude[] Array of altitudes at which the

atmospheric data is defined .
double / feet 0 – 99,999

temp[] Array of temperatures at the
corresponding altitude above.

double /
degrees C

>-273.15

wind_speed[] Array of wind speeds at the
corresponding altitudes above

double / knots ≥0

wind_direction[] Array of wind direction from
true north at the
corresponding altitudes above

double /
radians

(0,2π)

temp_dev[] Array of temperature double / valid double

19

deviations from ISA at the
corresponding altitudes above

degrees C

3.2.3.1.4.4 MCP State Data Type

The MCP State data is currently included as a placeholder in the event that future AOP
functionality will desire to use the current MCP settings (and possibly forecast MCP
settings) to determine alternate trajectories. Tracking this data through the CD&R
function allows resolution to be performed on these types of trajectories in the future. A
placeholder MCP data type is defined with no particular significance to the data.

typedef struct mcpState {
 double time;
} MCPState;

3.2.3.1.4.5 State Data Type

The state data type is used to construct flight trajectories and is pointed to by a flight plan
after the flight plan has been passed through a flight trajectory calculation. The state data
elements are defined below.

class StateCR
{
public:

StateCR(); // Constructor
~StateCR(); // Destructor

 Waypoint* waypoint;
 double latitude;
 double longitude;
 double altitude;
 double time;
 Xyz location;
 double vertical_speed;
 double cas;
 double ground_speed;
 double gross_weight;
 double mach;
 double ground_track;
 AtmosphericType atmospheric;
 double x;
 StateCR* next;
 StateCR* prev;
};

20

Data Element Description Type / Units Range
waypoint pointer to the prior waypoint in the

flight plan
Waypoint* valid

pointer into
flight plan

latitude Latitude (N is positive) double / radians (-π,π)
longitude Longitude (E is positive) double / radians (-π,π)
altitude Altitude double / feet (0,99999)
time Time of aircraft presence at this

location
double / minutes (>0)

location Unit vector of latitude and
longitude described above.

Xyz / unit vector

vertical_speed Vertical speed at location double / fps valid
double

cas CAS at location double / knots ≥ 0
ground_speed Ground speed of aircraft at location double / knots ≥ 0
gross_weight Aircraft gross weight at location double / pounds ≥ 0
mach Mach number at location double ≥ 0
ground_track Ground Track angle relative to true

North at current point
double / radians (0,2π)

atmospheric Atmospheric data at current
location

AtmosphericType

x Along-track distance from PPOS at
the current point.

double / nmi ≥ 0

prev Pointer to prior point in trajectory.
PPOS points to NULL.

stateCR * NULL or
pointer to
valid data

next Pointer to next point in trajectory.
Final point in trajectory points to
NULL.

stateCR * NULL or
pointer to
valid data

3.2.3.2 Own-ship Trajectory Description

The CD&R function will receive an own-ship trajectory description associated with the
own-ship flight plan. This trajectory description will use a list of states to define the
flight trajectory. It is assumed that the trajectory can be linearly interpolated between
points. The data structure defining the trajectory is defined below.

struct Ownship
{
 char AC_ID[10];
 struct Ownship* parent;
 bool vertical_manuever;
 struct State traj_sync[1000];
 struct State traj_Async[1000];
 double min_H;

21

 double max_H;
 struct IntruderNonPruneList *non_prune_intruder_list;
 struct AreaNonPruneList *non_prune_area_list;
 struct Conflict *conflict_list;
 struct AreaConflict *area_conflict_list;
 StateCR *state;
};

Data Element Description Type / Units Range
AC_ID String containing unique

aircraft identifier
char * ASCII string

parent Pointer to “parent”
trajectory. The original
trajectory from which this
one is derived

struct
Ownship

NULL or valid
pointer

vertical_maneuver Boolean indicating if the
trajectory contains a
vertical maneuver away
from the parent

bool true/false

traj_sync Array of states indicating
the synchronized trajectory
of the flight

State [] valid structures

traj_Async Array of states indicating
the non-synchronized
trajectory of the flight

State [] valid structures

min_H Minimum altitude of this
flight trajectory

double/ feet (0,99999)

max_H Maximum altitude of this
flight trajectory

double/feet (0,99999)

non_prune_intruder
_list

Pointer into list of intruders
that have to be compared

struct
IntruderNonPru
neList*

valid structure
pointer or NULL

non_prune_area_list Pointer into list of area
hazards that have to be
compared

struct
AreaNonPrune
List*

valid structure
pointer or NULL

conflict_list Pointer to list of conflicts
applicable to this trajectory

struct
Conflict *

NULL or valid
pointer

area_conflict_list Pointer to list of area
conflicts applicable to this
trajectory

struct
AreaConflict *

NULL or valid
pointer

22

state Pointer to a list of states
defining the trajectory

StateCR * NULL or valid
pointer

The above makes use of the following data structures:

struct State
{

double t;
double x;
double y;
double z;
double lat;
double lon;
double h;

};

Data Element Description Type / Units Range
t Time double/seconds >0
x x-position Cartesian (NOT unit) double / nmi
y y-position Cartesian double / nmi
z z-position Cartesian double / nmi
lat latitude double / degrees (-90,90)
lon longitude double / degrees (-180.,180)
h Altitude double / feet (0, 99999)

struct IntruderNonPruneList {
struct IntruderNonPruneList *next;
struct IntruderNonPruneList *prev;
struct Intruder *intruder;//intruder in the NonPrune List

};

Data Element Description Type / Units Range
next Next intruder element in list struct

IntruderNonPruneList*
NULL or
valid pointer

prev Prior intruder element in list struct
IntruderNonPruneList*

NULL or
valid pointer

intruder Intruder trajectory to be
compared against

struct Intruder* Valid pointer

struct AreaNonPruneList {
int place_in_list;
struct AreaNonPruneList *next;
struct AreaNonPruneList *prev;
struct AreaHazard *area_hazard;

};

23

Data Element Description Type / Units Range
place_in_list Location in list of hazards int >0
next Next intruder element in list struct

AreaNonPruneList*
NULL or
valid pointer

prev Prior intruder element in list struct
AreaNonPruneList*

NULL or
valid pointer

area_hazard Intruder trajectory to be
compared against

struct AreaHazard* Valid pointer

3.2.3.3 Own-ship State Description

The own-ship state description is defined by the first STATE element in the aircraft
trajectory list. The first element is that whose prev element points to NULL.

3.2.3.4 Area Hazard Description

Area hazards are expected by the CD&R function to be received as one data structure
containing all area hazards. These are described according to the following data
structure.

struct AreaHazard
{

char area_hazard_ID[10];
struct AreaHazard* previous;
struct AreaHazard* next;
struct Node polygon[10];
struct BoundaryPlane lat_haz_box_plane[4];
double min_H;
double max_H;
double North_max;
double South_max;
double East_max;
double West_max;
SIDE_STRUCT side[10];
int num_sides;

};

Data Element Description Type / Units Range
area_hazard_I
D

Unique identifier for hazard char [] ASCII

previous Prior area hazard in area hazard list struct
AreaHazard*

NULL or
valid
pointer

next Next area hazard in area hazard list struct
AreaHazard*

NULL or
valid
pointer

polygon Array of nodes defining area hazard struct Node [10] valid struct

24

geometry
lat_haz_box_pl
ane

Array of calculated data to simplify
area hazard calculations

struct
BoundaryPlane[4]

valid struct

min_H Minimum altitude of area hazard double / feet 0,99999
max_H Maximum altitude of area hazard double / feet 0, 99999
North_max Northern-most limit of area hazard double / degrees -90,90
South_max Southern-most limit of area hazard double / degrees -90, 90
East_max Eastern-most limit of area hazard double / degrees -180, 180
West_max Western-most limit of area hazard double / degrees -180, 180
side Array of data defining each area

hazard side.
SIDE_STRUCT[10] valid struct

num_sides Number of sides defining area
hazard

int >0

The above uses the following data structures.

struct Node {
double lat;
double lon;

};

Data Element Description Type / Units Range
lat Latitude double / degrees (-90,90)
lon Longitude double / degrees (-180,180)

struct BoundaryPlane {
struct Point ref_point;
struct Point normal_vector;
struct Point position_vector;

};

Data Element Description Type / Units Range
ref_point reference point on boundary plane struct Point valid struct
normal_vector Normal to the boundary plane of

hazard box
struct Point valid struct

position_vector vector from boundary plane to
aircraft current position

struct Point valid struct

typedef struct Side {
struct Point point1;
struct Point point2;
//normal to the plane that the boundary lies on
struct Point norm;

} SIDE_STRUCT ;

Data Element Description Type / Units Range

25

point1 Start point of side struct Point valid struct
point2 End point of side struct Point valid struct
norm Normal to the plane that boundary

lies on
struct Point valid struct

struct Point {
double x;
double y;
double z;

};

Data Element Description Type / Units Range
x x-position Cartesian (NOT unit) double / nmi
y y-position Cartesian double / nmi
z z-position Cartesian double / nmi

3.2.3.5 Intruder Aircraft Trajectory Description

Intruder trajectories are expected to follow a format defined below. Intruder trajectories
are simpler than own-ship trajectories since certain own-ship data (e.g. flight plan
information) is not available for intruders. Intruder trajectories are uniquely identified
through their flight identifiers.

struct Intruder
{

char AC_ID[10];
struct Intruder *previous;
struct Intruder *next;
struct State traj_sync[MAX_SYNC_SIZE];
struct State traj_Async[MAX_ASYNC_SIZE];
double min_H;
double max_H;

};

Data Element Description Type / Units Range
AC_ID Unique identifier for intruder char [] ASCII
previous prior intruder in list of intruders struct Intruder * valid pointer

or NULL
next next intruder in list of intruders struct Intruder * valid pointer

or NULL
traj_sync Array of synchronized trajectory

points
struct State[] valid

structure
traj_Async Array of trajectory points (not

synchronized)
struct State[] valid

structure
min_H Minimum trajectory altitude double / feet 0,99999
max_H Maximum trajectory altitude double / feet 0,99999

26

3.2.3.6 Intruder Aircraft State Information

Intruder state information is obtained through the intruder aircraft trajectory. The first
data element in the list of states is the most recent intruder aircraft state. The first
element in the list of states is identified as the element whose previous element points to
NULL.

3.2.3.7 (Deleted)

Section deleted

3.2.3.8 Boundary Constraints

It may be necessary for the CD&R function to accept boundary constraints. These
represent constraints that occur at the point on the flight plan intercepting a specified
boundary. Classes representing these constraints are defined below.

class BoundaryConstraint
{
public:

BoundaryConstraint(); // Constructor
~BoundaryConstraint(); // Destructor

 BoundaryList* boundary;
 Restriction time_restriction;
 Restriction speed_restriction;
 Restriction mach_restriction;
 Restriction altitude_restriction;
 double max_latitude;
 double min_latitude;
 double max_longitude;
 double min_longitude;
};

class BoundaryList
{
public:

BoundaryList(); // Constructor
~BoundaryList(); // Destructor

 double latitude;
 double longitude;
 Xyz xyz_location;
 BoundaryList* next;
 BoundaryList* prev;
};

27

Data Element Description Type / Units Range
Boundary List of boundary points on

which constraint is to be
applied

BoundaryList* Pointer to valid list

time_restrictio
n

Time restriction to be applied
when the flight plan crosses
this boundary

Restriction Valid restriction

speed_restricti
on

CAS restriction to be applied
when the flight plan crosses
this boundary

Restriction Valid restriction

mach_restrictio
n

Mach restriction to be applied
when the flight plan crosses
this boundary

Restriction Valid restriction

altitude_restrict
ion

Altitude restriction to be
applied when the flight plan
crosses this boundary

Restriction Valid restriction

max_latitude Maximum latitude for this
boundary

double /
radians

(-π/2,π/2)

min_latitude Minimum latitude for this
boundary

double /
radians

(-π/2,π/2)

max_longitude Maximum longitude for this
boundary

double /
radians

(-π,π)

min_longitude Minimum longitude for this
boundary

double /
radians

(-π,π)

Data Element Description Type / Units Range
latitude Latitude (N is positive) double / rad (-π/2,π/2)
longitude Longitude (E is positive) double / rad (-π,π)
xyz_location Unit vector from Earth’s center

representing location of corner
point

Xyz unit vector

next Pointer to the next point
describing the boundary Null
is last point in list

BoundaryList* NULL or valid
pointer

prev Pointer to the previous point
describing the boundary.
NULL is the first point in the
list.

BoundaryList* NULL or valid
pointer

3.3 CD&R and Flight Rules

The CD&R function and the flight rules function exchange data as specified in this
section. In order to preserve maximum flexibility in the flight rules, a large amount of

28

information will be submitted to the flight rules. This provides access to the information
required by the flight rules to determine useful resolutions.

3.3.1 Protocol

The CD&R and the flight rules function will operate serially. The flight rules function
will be initiated by the CD&R function. The CD&R function will pass data to the flight
rules function and subsequently wait for a response from the rules function. The flight
rules function will pass data back to the CD&R function as a response. The flight rules
are currently called through the following function call.

int ManeuverList * mainRules(struct Conflict* conflict_list,
 struct AreaConflict* area_conflict_list,
 const FlightPlan* flight_in,
 const struct Ownship* traj_in)

3.3.2 Priority

All data received by the flight rules function is of equal priority.

3.3.3 Data Elements

The flight rules function will receive the following data from the CD&R function:

• Conflict information

• Own-ship flight plan

• Own-ship flight trajectory

• Own-ship aircraft state (included in Ownship data structure)

The flight rules will return to the CD&R function maneuver constraints to be followed by
the own-ship. The return of maneuver constraints indicates that the own-ship must
respond by displacing itself. The return of a NULL pointer in the place of maneuver
constraints indicates that the own-ship is not expected to displace itself in response to the
conflict.

3.3.3.1 Conflict Information

Traffic conflict information provided to the rules function is described through the
following data structure.

struct Conflict
{
 struct Intruder *intruder;

29

 struct Conflict *next;
 struct Conflict *prev;
 struct State first_loss;
 struct State last_loss;
};

Data Element Description Type / Units Range
intruder The intruder that own-ship is

in conflict with
struct
Intruder*

Valid pointer

next Next conflict in the conflict list struct
Conflict*

NULL or valid
pointer

prev Prior conflict in conflict list struct
Conflict*

NULL or valid
pointer

first_loss Copy of the first point in the
own-ship flight trajectory point
at which separation is lost.

struct State Valid own-ship data

last_loss The last point in the own-ship
flight trajectory point at which
separation is lost.

struct State Valid own-ship data

Area hazard conflict information is provided to the rules function through the following
data structure.

struct AreaConflict
{

struct AreaHazard* area_hazard;
struct AreaConflict* next;
struct AreaConflict* prev;
struct State first_intrusion_point;
struct State last_intrusion_point;

};

Data Element Description Type / Units Range
area_hazard The area hazard that own-ship

is in conflict with
struct
AreaHazard*

Valid pointer

next Next conflict in the conflict list struct
AreaConflict
*

NULL or valid
pointer

prev Prior conflict in conflict list struct
AreaConflict
*

NULL or valid
pointer

first_intrusion_p
oint

Copy of the first point in the
own-ship flight trajectory point
at which the trajectory enters
the area hazard.

struct State Valid own-ship data

last_intrusion_p Copy of the point in the own- struct State Valid own-ship data

30

oint ship flight trajectory point at
which the trajectory exits the
area hazard

3.3.3.2 Own-ship Flight Trajectory

The flight trajectory is passed as described in the Section “Own-ship Trajectory
Description.”

3.3.3.3 Own-ship Flight Plan

The flight plan is passed as described in the Section, “Own-ship Flight Plan Data
Description.”

3.3.3.4 Own-ship Aircraft State

The aircraft state is passed as described in the Section, “State Data Type.”

3.3.3.5 Description of Conflicting Hazards

The rules function will have access to the conflicting hazards through the hazard
identifier provided with the conflict identifier. The data elements in area hazards are
defined in the Section, “Area Hazard Description.” The data elements in the traffic
hazards are defined in the Section, “Intruder Aircraft Trajectory Description.”

struct HazardDatabase {
struct Intruder *intruder_list_head;
struct AreaHazard *area_list_head;
ACE_Thread_Mutex mutex_;

};

Data Element Description Type / Units Range
intruder_list_head List of traffic hazards as

processed by CD
struct Intruder* Valid pointer

area_list_head List of area hazards as
processed by CD

struct
AreaHazard*

Valid pointer

mutex_ Mutex class used to lock
access to the hazards
database under multiple
threads.

ACE_Thread_
Mutex

valid class

3.3.3.6 Maneuver Constraints

The Flight Rules function may return maneuver constraints to the CD&R function.
When present, the maneuver constraints will be described as a list of maneuver arrays.
Each maneuver array in the list will define a combination of maneuvers to be attempted

31

by the resolution function (e.g., vector and speed). If the rules function does not return
maneuver constraints, the returned maneuver list will point to NULL. Maneuver
constraint data is defined below through two classes. Note that public data types were
provided to provide a consistent transition from structures to classes with minimal re-
coding.

class ManeuverConstraint
{
public:

 // Constructor
 ManeuverConstraint();
 ManeuverConstraint(char *, int , double , double , Waypoint *, Waypoint *);
 ManeuverConstraint(ManeuverConstraint*);

 //Destructor
 ~ManeuverConstraint();

 // Methods
 void setManeuver(char *, int , double , double , Waypoint * , Waypoint *);
 void setManeuverType(char *);
 void setDirection(int);
 void setStart(Waypoint *);
 void setEnd(Waypoint *);
 void setMaximum(double);
 void setMinimum(double);
 void setStartDesired(double);
 void setEndDesired(double);

 // Data
 char maneuver[15];
 char type[15];
 int direction;
 Waypoint* start_point;
 Waypoint* end_point;
 double max;
 double min;
 double start_desired;
 double end_desired;
};

class ManeuverList
{
public:
 // Constructors
 ManeuverList();

32

 ManeuverList(int, ManeuverConstraint *);
 ManeuverList(ManeuverList *);

 // Destructor
 ~ManeuverList();

 void addManeuver(int,ManeuverConstraint *); //Method to add to list
 ManeuverList *jumpToEnd(); //Jump to end of list

 // Class Data
 int number_of_maneuvers;
 ManeuverConstraint *maneuver;
 ManeuverList *prev;
 ManeuverList *next;
};

Data Element Description Type / Units Range
maneuver Maneuver degree-of-freedom char [] “lateral”

“global”
“speed”
“altitude”
“time”

type Specific type of maneuver
dependent on degree-of-
freedom

char [] if lateral:
 general
 vector
 offset
if global:
 speed
 altitude
 climb_mach
 climb_cas
 descent_mach
 descent_cas
if speed:
 temporary
 permanent
if altitude:
 permanent
 temporary
 level-off
if time:
 time

direction Direction of maneuver.
 Positive maneuver if >0.
 Either direction if ==0
 Negative maneuver if <0

int valid int

33

start_point Pointer to the first point in the
flight plan at which the
maneuver is allowed to begin.

Waypoint * valid pointer into
flight plan

end_point Pointer to the last point in the
flight plan at which maneuvers
is allowed to begin

Waypoint * valid pointer into
flight plan

max Maximum allowed
displacement from the nominal
flight plan

double /
function of
maneuver

min Minimum allowed displacement
from the nominal flight plan
(also refers to displacement in
negative direction)

double /
function of
maneuver

start_desired Earliest desired starting time of
maneuver

double /
minutes

> 0

end_desired Latest desired ending time of
maneuver

double /
minutes

> 0

Data Element Description Type / Units Range
number_of_maneuve
rs

Number of elements in the
array of maneuvers

int >0

maneuver Array of maneuvers to create a
combined maneuver

ManeuverConstrai
nt*

Valid
pointer

prev Pointer to previous combined
maneuver to be attempted. A
null pointer indicates the first
maneuver array in the list.

ManeuverList * NULL or
valid
pointer

next Pointer to next combined
maneuver to be attempted. A
null pointer indicates the last
maneuver array in the list.

ManeuverList * NULL or
valid
pointer

3.4 CD&R and FMS Pre-processor

The role of the FMS pre-processor is to act as a gateway for data between CD&R and the
FMS. This pre-processor was necessary since the data formats were not firmly
established at the time of the design of CD&R, and since testing of the CD&R function
required use of an existing FMS function. The role of the FMS pre-processor is to obtain
a trajectory from flight plan data.

3.4.1 Protocol

The CD&R and the FMS pre-processing function operate serially. The FMS pre-
processing function is initiated by a function call from CD&R. The CD&R function will
pass data to the FMS pre-processing function and wait for a response from the pre-

34

processing function. The FMS pre-processing function will pass trajectory data back to
the CD&R function in response. The FMS pre-processing function is accessed through a
function call with the following function prototype.

struct Ownship getTrajectory(FlightPlan , StateCR *);

Since multiple threads may be calling the above function, a mutual exclusion mechanism
was required. This is achieved through a global variable that is shared by all threads
wishing to call the getTrajectory function as defined below.

ACE_Thread_Mutex trajectory_mutex;

The above mutex is acquired at the beginning of all getTrajectory calls and released at the
end. Should multiple threads wish to access the getTrajectory function, the acquire
method will block until all other threads have released the mutex. This approach
prevents global variables used by Fastwin functions from being modified during multi-
threaded calls to the getTrajectory function.

3.4.2 Priority

Data passed across the CD&R to FMS pre-processing interface will all be at the same
priority level.

3.4.3 Data Elements

The FMS preprocessor will receive flight plan and state information from the CD&R
function and will return flight trajectory information to the CD&R function.

3.4.3.1 Flight Plan Description

Flight plan data is described in the Section “Own-ship Flight Plan Data Description”.

3.4.3.2 State Description

Aircraft State data is described in the Section “State Data Type”.

3.4.3.3 Trajectory Data Description

Trajectory data is described in the Section “Own-ship Trajectory Description”.

35

3.5 CD&R and Constraint Manager

3.5.1 Protocol

TBD – currently expect CD&R to call CM and submit all the conflict, trajectory and
flight plan information, this may need to be redefined.

The CD&R function passes data to the Constraint Manager function. Upon passing data,
CD&R returns to a state of awaiting input from AOP and does not continue with conflict
resolution. The Constraint Manager will subsequently complete its processing and
submit modified trajectories to the CD&R function through the AOP calling function.
The CM function will be initiated as a separate process to the CD&R function (TBD how
implemented in ACE, for instance, CM could be running all the time and data passed
from CD&R, or could be initiated by CD&R. Requirements for how to handle receipt of
updated trajectory information when CM is running need to be defined.)

3.5.2 Priority

Data passed from the CD&R function to the Constraint Manager function will be at the
same priority level.

3.5.3 Data Elements

TBD – Assumption that CM will simply receive a “data dump” from CD&R reflects lack
of a specific approach to manage constraints. Many possibilities and ad hoc cases have
been articulated, but a specific methodology has not yet been defined.

The Constraint Manager function receives the following data from the CD&R function.

Own-ship flight trajectory (type Ownship)

Own-ship flight plan (type FlightPlan)

Own-ship flight state (type StateCR)

Conflict description (type Conflict)

Area hazard description (type AreaHazard)

Intruder trajectories (type Intruder)

The Constraint Manager submits modified input information to the CD&R function
through the same interface as the AOP calling function. As far as CD&R is concerned,
that data is treated as any other conflicting flight plan.

36

3.5.3.1 Own-ship Flight Trajectory

The own-ship flight trajectory data elements are described in the Section “Own-ship
Trajectory Description”,

3.5.3.2 Own-ship Flight Plan

The own-ship flight plan data elements are described in the Section “ Own-ship Flight
Plan Data Description”.

3.5.3.3 Own-ship Flight State

The own-ship flight state data elements are described in the Section “ Own-ship State
Description”.

3.5.3.4 Conflict Description

The description of conflict data is defined in the Section “Conflict Information”.

3.5.3.5 Area Hazard Description

The description of Area hazard data is defined in the Section “Area Hazard Description”.

3.5.3.6 Intruder Trajectories

The description of intruder trajectories is defined in the Section “Intruder Aircraft
Trajectory Description”.

3.6 CD&R and User Input Function

3.6.1 Protocol

The CD&R function and the User Input Function will operate concurrently. Data will be
passed asynchronously from the User Input Function to the CD&R function through the
AOP calling function via messages. The protocol for these messages is defined in the
protocol section of the CD&R and AOP Calling Function section.

3.6.2 Priority

The current implementation of messages between the AOP calling function and the
CD&R function does not implement priorities on messages.

For future builds, one may consider the following:

Data from the User Input Function to the CD&R function will have priority levels
assigned to them in the event of buffering between the functions. More recent data of

37

the same type will have priority over older data of the same type. User-supplied flight
plans for manual resolution will have priority over other forms of data. User-supplied
maneuver constraints will be second in the priority list of user-supplied data. Flight
plans for provisional planning will be lowest in the priority list of user-input data. All
other data types will have equal priority.

In the event of data queued between the User-Input Function and the CD&R function, the
higher priority data jumps to the head of the queue for processing by the CD&R function.

3.6.3 Data Elements

The user input function will provide the CD&R function with the following information:

- User-supplied flight plans for manual resolution

- User-supplied flight plans for provisional planning (same format as above.)

- Resolution mode selection

- Request of next Flight Plan

- Resolution Accept

- User-supplied maneuver constraints

- User-supplied maneuver preferences

Some of these data requirements have been defined in prior sections. New data
requirements are defined below.

3.6.3.1 User-Supplied Flight Plans

The data elements describing flight plans for both manual resolution and provisional
planning are defined in the Section “Own-ship Flight Plan Data Description”. These
flight plans are supplied to the CD&R function through a MANUAL_FP_RES message
(defined in the section “Messages from AOP to CD&R”).

3.6.3.2 Resolution Mode Selection

Subsequent to manual input of maneuver constraints the user may desire that automatic
resolution be performed on a potential conflict. An indication to the CD&R function that
the user wishes to return to automatic resolution mode is required. The user input
function will supply the indication to return to automatic resolution mode through
FORCE_AUTO message as defined in the Section “Messages from AOP to CD&R”.

38

3.6.3.3 Request of Next Flight Plan

Subsequent to completion of conflict resolution, multiple valid flight plans may be
available for resolution. Even during the resolution process, conflict-free flight plans
may already be available. The user will have the option to request that the next available
conflict-free flight plan be submitted to the Crew Notification Function. The user input
function will supply an indication to the CD&R function to send the next flight plan (in
the ranked list of resolved flight plans) to the CNF. This indication will be through a
REQUEST_RESOLVED message as defined in the Section “Messages from AOP to
CD&R”.

3.6.3.4 Resolution Accept

Upon user selection of a flight plan for conflict resolution, an indication will be sent to
the CD&R function by the CNF, that a flight plan has been selected for resolution. This
indication will be through an ACCEPT_RESOL message as defined in the Section
“Messages from AOP to CD&R”.

3.6.3.5 User-Supplied Maneuver Constraints

The data elements describing user-supplied maneuver constraints are defined in the
Section “Maneuver Constraints”. These are supplied to the CD&R function through a
MANEUVER_CONSTRAINT message as defined in the Section “Messages from AOP
to CD&R”. The effect of the message is to switch the resolution mode to semi-
automatic.

3.6.3.6 User-Supplied Maneuver Preferences

User-supplied maneuver preferences are to be selected from a menu of choices as defined
below.

• Minimum time – the conflict-free maneuver meeting specified constraints is to be
selected based upon minimum total time

• Minimum cost – the conflict-free maneuver that minimized a total cost will be
selected. The total cost requires a specified cost index for the maneuver.

• Minimum fuel – the conflict-free maneuver that consumes the least fuel will be
selected.

• Minimum constraints – the conflict-free maneuver that requires the least number
of additional constraints will be selected. Of those maneuvers with an equal
number of constraints, the flight plan with the least restrictive constraints will be
selected.

• Minimum time away from original flight plan – the conflict-free maneuver that
requires the least amount of time away from the original flight path (4D) will be
selected. This is not a meaningful choice with a final RTA.

39

• Minimum distance away from original flight plan – the conflict-free maneuver
that requires the least amount of distance away from the original flight path will
be selected. This can be meaningful in 4D by considering the distance that the 4D
paths are not equivalent.

This data will be sent from the CNF to the CD&R function through a
MANEUVER_PREFERENCE message as defined in the Section “Messages from AOP
to CD&R”. However, the data within the message will contain the following data
element.

enum ManeuverPreference{MIN_TIME, MIN_COST, MIN_FUEL,
MIN_CONSTRAINT, MIN_TIME_AWAY, MIN_DIST_AWAY};

Data Element Description Type /
Units

Range

man_preference Type of maneuver
preference for resolution

enum MIN_TIME
MIN_COST
MIN_FUEL
MIN_CONSTRAINT
MIN_TIME_AWAY
MIN_DIST_AWAY

3.7 CD&R and Long-term Optimization Function

3.7.1 Protocol

TBD

The long-term optimization function and the CD&R function operate serially. (Note that
the optimization function being described here only refers to that portion of the
optimization function providing CD&R, upon request, with an optimized flight plan.)
The CD&R will initiate the long-term optimization function with a function call, and the
CD&R will receive data from the long-term optimization function.

3.7.2 Priority

No priority is assigned to messages between the long-term optimization function and the
CD&R function.

3.7.3 Data Elements

The long-term optimization function will receive a request for a long-term optimized
flight plan and trajectory from the CD&R function. The long-term optimization function
will return a long-term optimized flight plan in response to this request. In addition, the
corresponding flight trajectory will be passed.

40

3.7.3.1 Long-Term Optimized Flight Plan

The Long-term optimization function will return a long-term optimized flight plan to the
CD&R function. See the Section “Own-ship Flight Plan Data Description” for data
descriptions.

3.7.3.2 Long-Term Optimized Flight Trajectory

The Long-term optimization function will return to the CD&R function, a long-term
optimized flight trajectory corresponding to the above flight plan. See the Section “Own-
Ship Trajectory Description” for data descriptions.

3.8 CD&R and Crew Notification Function

3.8.1 Protocol

The CD&R function and the Crew Notification Function will operate concurrently. Data
will be passed asynchronously from the CD&R function to the CNF via the AOP calling
function. The AOP calling function will receive messages from CD&R through a
ReturnQueue as defined in the Section “Messages from CD&R to AOP”.

3.8.2 Priority

Messages from the CD&R function to the Crew Notification Function may have priorities
assigned to them based upon the urgency of the data to be presented. Data of higher
priority are processed first by the CNF in the event of buffering between the CD&R
function and the CNF. No specific messaging priority scheme has been built into the
message queues.

3.8.3 Data Elements

The Crew Notification Function receives a collection of messages from the CD&R
function. As the display mechanism for the AOP, the CNF is expected to receive the
following data from CD&R.

• Conflict information

• Result of flight rules (maneuver constraints and decision to move)

• Result of resolution process including “best” candidate flight plan

• Notification that a conflict has disappeared

Note that hazard information (area and traffic) will be submitted to the CNF through a
separate function. Rather than send processed data to the CNF, the initial implementation

41

will supply the CNF with the raw data, allowing the CNF to process, filter and format the
information for display.

3.8.3.1 Conflict Information

The Section “Conflict Information” defines the data requirements for conflict information
being passed to the CNF by the CD&R (via the AOP calling function). This data will be
contained in CONFLICT or CONFLICTED FLID messages with formats defined in the
Section “Messages from CD&R to AOP”. Note that the CONFLICT message is a
response to the own-ship trajectory whereas the CONFLICTED FLID message is a
response to a trial plan or manual resolution.

3.8.3.2 Result of Flight Rules

The CD&R will submit the “who moves?” flight rules decision to the CNF. This latter
output of the flight rules function (a function call) will be translated to a THEY_MOVE
or WE_MOVE message as defined in Section “Messages from CD&R to AOP” for
submission to the CNF.

3.8.3.3 Resolution Result Output

Upon resolution of a conflict, or upon request by the User Input function, the CNF will
receive a flight plan from the CD&R function through the AOP calling function. The
format of the flight plan is defined in the section “Own-Ship Flight Plan Data
Description”. Receipt of a NULL flight plan will indicate that no further data is
available. The output of resolutions is contained in a RESOLVED_FP or a
LAST_RESOLVED_FP message as described in the Section “Messages from CD&R to
AOP”.

3.8.3.4 Conflict Disappeared

If a trajectory update or hazard update indicates that a conflict has disappeared, the CNF
will be notified through updated conflict information via the AOP calling function. The
absence of a specific conflict in the conflict information indicates that the conflict has
disappeared. A NO_CONFLICT message is sent from the CD&R function to the AOP
when no conflict is found and can be used to indicate the disappearance of a prior
conflict. This messages is described in the Section “Messages from CD&R to AOP”.

